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Time Discretization in the Backward Solution 
of Parabolic Equations. II* 

By Lars Elden 

Abstract. The backward beam method for solving a parabolic partial differential equation 
backward in time is studied. 

Time discretizations based on Pade approximations of the exponential function are consid- 
ered, and a priori estimates of the step length are given, which guarantee an almost optimal 
error bound. The computational efficiency of different discretizations is discussed. Some 
numerical examples are given, which compare the backward beam method and the regulariza- 
tion method studied in Part I of this paper. 

1. Introduction. The problem of solving a parabolic partial differential equation 
backward in time is a classical ill-posed problem; the solution (if it exists) does not 
depend continuously on the data. 

We write the equation in the following form 

(l.l) {~~~~~~~U - LU ? < t < I 

where w(x) is a given function in L2(Q2), and Q is a bounded domain in Rn with a 
smooth boundary aQ. L is the unbounded, nonnegative operator in L2(Q) corre- 
sponding to a selfadjoint, elliptic boundary value problem in 2 with zero Dirichlet 
data on a2. The coefficients of L are assumed to be smooth and independent of 
time. 

Continuous dependence on the data is restored, if we impose a bound on the 
solution at t = 0 and allow for some imprecision in the data. Thus consider the 
following constrained problem. 

Find any solution 

tu =-Lu, O < t < 1, 
(1.2) u() - w 11 < , 

lIIU(0)II Ml 

where the norm is the L2(i2)-norm, and 8 and M are given positive constants, 8 < M. 
(Throughout this paper we assume that 8 and M have been chosen so that there exist 
solutions of (1.2).) Using logarithmic convexity [ 1], [8, p. 11], it is easy to show that 
any two solutions of (1.2), uI and u2, satisfy 

(1.3) 11u(t) - u2(t)11 < 28tM'-t. 

Thus, for 0 < t < 1, we have continuous dependence on the data. 
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Now if we want to solve (1.2), the best we can hope for, in view of (1.3), is to find 
an approximate solution v(t) with the error estimate 

(1.4) 11 u(t)- v(t)ll -< CA M ,t 

where u(t) denotes an arbitrary solution of (1.2) and C is some constant. There are 
at least two methods for approximating solutions of (1.2) which have the estimate 
(1.4) with C = 1. One is the regularization method with time-dependent regularization 
parameter [9], [7], [5]. The second method is the backward beam method [2]. 

In [5] we investigated how to discretize in the regularization method, so that we 
get the same type of error estimate (1.4) for the time-discrete version of the method. 
In this paper we consider the same problem for the backward beam method. We 
show that it is possible to make a time discretization in this method, so that for the 
approximate solution va(t) we get the error estimate 

(1.5) IIu(t) - Va(t)II < 23tM-t, 

with u as in (1.4). We also give a priori estimates of the step length in the time 
discretization, which guarantee that (1.5) holds. These results will have significance 
for the practical solution of problems in two or more space dimensions, where the 
geometry is nonrectangular or the coefficients of the differential operator are 
nonconstant, since for such problems it is necessary to discretize in time and space. 
To a great extent the results of this paper parallel those in [5] for the regularization 
method. 

The backward beam method was introduced in [2] for a more general class of 
equations. In Section 2 we give a brief account of the method applied to the problem 
(1.1) 

Time discretization is discussed in rather general terms in Section 3, and pre- 
liminary error estimates are given. In Section 4 we describe more specifically a 
scheme based on Pade approximations of the exponential function. This time 
discretization is conceptually different from that suggested in [2], and its main 
advantage is that we can derive a priori estimates of the step length, for which (1.5) 
holds. Also, it requires less storage. 

In Section 5 we discuss the numerical realization of our procedure, and we show 
that we have to solve a sequence of equations of the type 

(1.6) (a iL2 + PiL + yiI)v, wi. 

The number of equations (1.6) is different for different Pade approximations and 
can be taken as a measure of the efficiency of a certain approximation. 

Some numerical examples for the backward beam and regularization methods are 
given in Section 6. 

Unless otherwise stated, the norm 11 is the L2(i2)-norm. Throughout we shall 
write exp(-Lt) to denote a member of the strongly continuous semigroup generated 
by L; see, e.g., [6]. This semigroup is easily defined in terms of the spectral 
representation of L. 

2. The Backward Beam Method. The backward beam method for approximating 
solutions of parabolic equations backwards in time was introduced by Buzbee and 
Carasso [2]. They considered the problem where the coefficients of the elliptic 
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operator may depend on time. In this section we give a brief description of the 
method, where we take advantage of our having restricted ourselves to the time-inde- 
pendent case. 

In this section we shall consider (1.1) as an abstract ordinary differential equation 
(with independent variable t) on a Hilbert space. This is fully justified by our 
assumptions on the operator L, since these assumptions guarantee the existence of a 
complete set of eigenfunctions of L, and by expansion in these eigenfunctions we 
can replace (1.1) by an infinite system of ordinary differential equations. 

Let u(t) be any solution of ut --Lu, and put 

(2.1) z(t) e Ku(t), K = log(M/8). 

Then it is easily seen that z satisfies 

Zt= (-L + KI)Z, 

where I is the identity operator. Differentiating with respect to t, we get the second 
order equation 

(2.2) ztt = (-L + KI )2Z. 

Next consider the following boundary value problem for (2.2) 

z = (-L + KI) Z, 

(2.3) z(O) = O, 

z(l) e Kw. 

This is a well-posed problem with the solution 

(2 .4) z(t ) = eK sinh((-L + KI)t) w 
sinh(-L +KI) 

(for notational convenience we allow ourselves to write the operator 

(sinh(-L + KI)) l(sinh((-L + KI)t)) 

as in (2.4). Note that the operator is easily defined in terms of the spectral 
representation of L). 

To make up for the change of variables (2.1), we now define 

(2.5) v(t) e-Ktz(t) = eK(It) sinh((-L ? .I)t)w 
sinh(-L +KI) 

In the following theorem it is shown that v(t) defined by (2.5) is a good approxima- 
tion of any solution of (1.2). 

THEOREM 2.1 (CF. [2, p.253]). Let u(t) denote any solution of (1.2), and let v(t) be 
defined by (2.5). Then for 0 < t < 1 

(2.6) IIu(t) - v(t)II - 3tMI-t. 

Proof. Any solution of u= -Lu can be written u(t) = exp(-Lt)u0, for some 
function uo [6, p. 109]. If u(t) is a solution of (1.2), we must have 

lu0 ll a M, 
(2.7) w = exp(-L)uo + 't1 

[114ItI I6. 
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We now get 

II u(t) - v(t)II < exp(-Lt) - e(lf-t) sinh(( L + KI)) exp(-tL) uo 
sinh(-L ? KI)ex(L 

?e"(lt) sinh((-L + KI)t) 

sinh(-L ? KI) 

where the operator norm is defined I A II = sup{ I IAu A :I IuI 1I 1}. We now use (2.7) 
and the fact that L is selfadjoint and nonnegative to get 

(2.8) IIu(t) - v(t)II < sup A(X)M + sup B(X)3, 
XAO XO 

where 

- Kl)sinh((-X ? K)t) - 
JA(A) = e At - e"(lt) . ( +)eA| ~~~, ~~sinh( - X?K)e 

B (X) K( I-t) sinh((-X + K)t) 

L ~~~sinh(-X?+K) 

It is elementary to show that for 0 < t < 1 

sinh at 
(2.9) sup sinh a t 

-cOca??oO sinha c 

and therefore 

(2.10) supB(X) eK(1-t) t = t(MIS)l 
XAO 

By some simple calculations we find that 

A(X) = e Ktsinh((iX( + K)(l - 

sinh(-X\ ? K) 

so that by (2.9) 

(2.11) supA(X) = e-Kt(I - t) = (/1M)t(I t) 

Using (2.10) and (2.11) in (2.8), we get the estimate (2.6). Q.E.D. 
The backward beam method and the regularization method [5] are related in the 

sense that the two methods give the same result at t = 0.5. This can be seen by the 
following argument. 

In the regularization method an approximate solution of (1.2) is given by 
Vr(t) = F(L, t)w, where the function F is defined by 

(2.12) F(X, t) = (exp(-X) + M(t))1exp(-Xt), p(t) =t 

Correspondingly, in the backward beam method we have 

(2.13) v(t) = G(L, t)w, G(X, t) e(1-t) sinh((-X ? )) s -I-,(-X?I) 
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Therefore, if F(X, 0.5) G(X, 0.5), for all X 2 0, then v(0.5) = vr(0.5). By the 
identity sinh 2x = 2 sinh x cosh x we get 

G(X, 0.5) = (M/I)0 5(2cosh((-X + K)/2)) 

= (e-X + 3/M) eX/2 = F(X, 0.5). 

It is easy to show that the two methods are different for all other t in the interval 
(0, 1). 

In [2] (2.3) is discretized in time by replacing the derivative ztt by a central 
difference. Our time discretization is based on the formula (2.5), and the discretiza- 
tion is performed by approximating the exponential function in the hyperbolic sine 
by a Pade approximation. This is described in the next two sections. 

3. Preliminary Error Estimates. We shall now consider an approximation of (2.5), 
where we replace the exponential function e-x in the hyperbolic sine by a function 
f(X). In this section we shall discuss this approximation in rather general terms, and 
it will not be explicitly seen that this corresponds to a time discretization. Here it 
will be sufficient to distinguish between two classes of approximations of the 
exponential functions characterized by the following inequalities 

(3.1) (i) e-x f(X X 1, A 0 , 

(3.2a) 0 J < f(X) e-, O < X < K,9 

(3.2b) l {o <f(X) < 1, X ?K. 

(K is defined by (2.1).) These two classes correspond to two classes of Pade 
approximations, as will be seen in the next section. 

The approximation of (2.5) is now defined 

,(l)sinh((log f(L) ? KI)t) (3.3) Va(t)=e''l ' (sinh(logf(L) + KI) W 

Using the spectral representation of L it is easy to see that, under either of the 
assumptions (3.1) and (3.2), (3.3) is well defined (if f(X) = 0 for X an eigenvalue of 
L, the expression is to be understood as the limit as X tends to that eigenvalue). 

We now state two theorems which give error estimates for (3.3), when f(X) 
satisfies (3.1) and (3.2). 

THEOREM 3.1. Let u(t) denote any solution of (1.2), let Va(t) be defined by (3.3), and 
assume that f satisfies (3.1). If 

(3.4) X + log f(X) < (8/M) t ext for 0 < X < K, 

then 

(3.5) IIu(t) - Va(t)II < (t + max(1,2(1 -t)))8tM-t. 

Proof. With the same arguments as in the proof of Theorem 2.1 we get 

(3.6a) IIu(t) - Va(t)II < supA(X) . M + sup B(X) - 8, 
x>o x>o 
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where now 

A(X) = let - e s(int) ih((10g f(X) ? K)t) e-| 

(3I.6b) Bt (((o sinh(log f(X) ? K) (3.6b) 
X =et(It)sinh((10g f(X) 

? 
K)t) 

L B() eKlt)sinh(Iog f(X) ? K) 

Using (2.9), we immediately get 

(3.7) B(X) < t(MI8)1 t. 

We then rewrite 

A(X) - (8/M)tAI(X) = e-tAI(X) 

-Kt 

e(X?K)t 
- 

sinh((log 
f(X) 

? 
K)t) 

e? = e lef )_ sinh(log f(X) + ) eK 

We now show that AI(X) 1 for X > K. Using (2.9), we get 

o < sinh((lg f(X) ? K)t) )e?+ < te-? + < e(-? +)t 

sin(lo f()? K) 

since 0 < t < 1. Therefore, for X > K, 

(3.8) AI(X ) - sinh((lg f(X) + K)t) eX < e +)t < 1. 
sinh(Iog f(X) ? K) 

We then show that, for 0 < X < K, AI(X) < 2(1 - t). For notational convenience we 

put 

(3.9) y = log f(X) + K, z - (X + log f(X)). 

Note that by the assumption (3.1) z < 0. 
Now we can write 

A,) |e(yz)t sinh y - sinh(yt)eY+z 

ezt(eYt sinhy - eY sinh(yt)) + (ezt - ez)eY sinh(yt) 

sinh y 

=eztsinh(y(l 
- ) + (ezt - ysinh(yt) 

sinh y sinh y 

since both terms are positive. By (2.9) and the fact that z < 0, we get 

A1(X) < (1 - t) + (ezt - ez)eY t, 

and then, using the mean value theorem for the second term, 

A,(X) < (1 - t) + z(t - I)e9eYt, 

where 6 lies in the interval (z, zt). Thus, since z < 0, we can estimate 

A1(X) i (1 - t) ? z(t - 1)ezteYt. 
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We now go back to the original notation (3.9) and use the assumption (3.4) 

A1(X) < (1 - t) + (X + log f(X))(I - t)(f(X)) e-Xtf(X)(M/8)t 
(3-10) 

< (I1-t) + (I1-t)( f(A)) 't < 2(l1-t), 
where the last inequality follows by (3.1). 

Combining (3.6), (3.7), (3.8), and (3.10) we get the desired estimate (3.5). Q.E.D. 

THEOREM 3.2. Let u(t) denote an arbitrary solution of (1.2), let Va(t) be defined by 
(3.3), and assume that f satisfies (3.2). If 

(3.11) -AX- log f(A) < (8/M) gtt for O < X < K , t 

then 

IIu(t) - Va(t)II < (t + max(1,2(1 -t)))StM'-. 

Proof. With the same notation and the arguments of Theorem 3.1 we immediately 
get 

B(X) ?t(MIS) 

and, for X > K, 

A(X) - (8/M)tAj(X) < (8/M)t. 

It remains to be shown that for 0 < X < K 

(3.12) Al(X) < 2(1 - t). 

As in the proof of the preceding theorem, we can write 

A1(X) 1 al(X) - a2(A) I 

azt sinh(y(l - t)) 
a1(X)=e sinhy 

a2( ) (ez ezt ) ey sinh(yt) 
ez)Ysinhy 

where y and z are defined by (3.9). Note that due to the assumption (3.2) z ? 0. 
Now (3.12) follows immediately if we can show that al(X) < 2(1 - t) for i = 1, 2. 
Using (2.9) and going back to the original notation (3.9), we get 

al(X) < exp((-X - log f(X))t)(1 - t). 

By (3.11) we have 

L - log f(X) < (8/M) ge < g2 t t 

since 0 < X ? K = log(M/I), and therefore al(X) ? 2(1 - t). 
Using the mean value theorem and (2.9), we can estimate 

a2(X) ? ez?Yz(l - t)t, 

and, going back to the original notation (3.9), we now have 

a2(X) ? (M/) (X - log f(X))(1 - t)t. 
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By the assumption (3.1 1) it follows that 

a2(X) < log2(1 - t) < 2(1 -t), 

and the proof is complete. Q.E.D. 
It may not be obvious that (3.4) and (3.11) are conditions on how well f(X) 

approximates e-X. However, if X + log f(X) is small, then eXf(X) is close to 1 and 
f(X) is a good approximation of e- 

Note that in both theorems f(X) need only be a good approximation of e-X for 
0 < X < K. This is true also for the regularization method. The reason is the same in 
both cases and is indicated in [5, Section 2]. 

4. A Priori Step Length Estimates for Pade Approximations.The approximations 
we have had in mind in Section 3 are Pade approximations. In this section we show 
that the exponential function can be approximated in a way which corresponds to a 
time discretization. Using the properties of Pade approximations, we then translate 
the conditions (3.4) and (3.11) of Theorems 3.1 and 3.2, respectively, into a priori 
conditions on the step length in time for a given Pade approximation. 

Since Theorems 3.1 and 3.2 of this paper are completely equivalent to the 
corresponding theorems in [5], it would be possible to replace this section almost 
entirely by Section 4 in [5]. For completeness we here give the basic definitions and 
the theorems without proof. 

Assume that the interval [0, 1] has been divided into N equal subintervals, put 
k - 1/N, and assume that t = nk for some integer n. Let fp(X) be defined by 

(4.1) f~~(X) - (PQpq(kX) N 

fp q Ppq(kX) 

where Qpq(Z)/Ppq(z) is the Pade approximation to e-z defined by 

q (p?+q -v)!q! 
(4.2a) Qpq(Z) 2VO (p + q)!v! (q - v)! 

(4.2b) Ppq(Z) = (P q -v)!p 
V=O (p ? q)!v! (p - ! 

Two simple approximations of this type are 

Q10(z)/P1o(z) =1(1 + z), 

Q11(Z)/P11(z) = (1 - z/2)/(1 + z/2), 

which in connection with ordinary differential equations correspond to the back- 
ward Euler and trapezoidal (Crank-Nicolson) methods. 

From the following theorems it is seen that the classes of approximations 
characterized by (3.1) and (3.2) correspond to Pade approximations with q even and 
q odd, respectively, q < p. 

The following quantity will be used in the theorems 

0p q - p!q! 

( p + q)! ( p + q? +1) ! 
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THEOREM 4.1. Let fNqX) be defined by (4.1), (4.2), and let q be even, q ? p. 
(a) For all X O, e-A fpq()s 1. 
(b) Let u(t) denote any solution of (1.2), and put 

(4.3) vN (t) = eK(I t) sinh((log fpNq(L) + KI)t) w. 
sinh(log fpN(L) + KI) 

If N > max(1/t, NI), where N1 = K(tupqKeK)l/(1+q), then 

IIu(t) - vpq(t)II < (t + max(1,2(1 -t))) tM 

THEOREM 4.2. Let fpq(X), u(t) and vpq(t) be defined as in Theorem 4.1. Assume that 
q is odd, q < p, N is even and t = nIN, where n is an even integer. 

If N > max(1/t, N2), where 

2 1/(p+q) 
N2= K -gtUpqKeK) 

then 

(a) |fO < fpq(X) < e X for O < X < K, 

(0 < apq(AX) 1 for X> K, 

and 

(b) IIu(t) - vpNq(t)II < (t + max(1,2(1 -t)))8tM 
1 

In [5] we give a few tables of N1 and N2 for different values of p and q. These 
tables indicate that it is more efficient to use a high order Pade approximation than 
a low order one like the backward Euler or trapezoidal approximations. 

5. Numerical Realization of the Procedure. So far we have paid no attention to the 
problem of actually computing the backward beam approximation. In fact, at first 
sight the formula (4.3) may seem to be very unsuitable for numerical computations, 
since it involves the evaluation of three different functions of the operator L. In this 
section we shall show how to reduce (4.3), so that the equations we need to solve in 
the computation of vN involve only quadratic polynomials in L. 

For notational convenience we omit the indices pq in this section. (4.3) can be 
written 

v N(t) =G(log fN (L), t)w, 

where 

G(X, t) = e"( -t) sinh((X + K)t) eK1)sinh(X + K) 

We now set out to rewrite G(log f N(X), t). Using the abbreviations P - P(XAN), 
Q = Q(XAN), and putting 0 = (6 M)l/N, we get 

G(log f N(X), t) = 6-(I-t)N (0Qp)Nt - (OPIQ)Nt 

(0 IQ P) 
N 

- (OP Q)N 

- QN(It) 1 - (OP Q)2Nt 
= 

(PI1-QOP )2 
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First consider the case when t = 1/N. We then get 

N-1_i 

G(log f N(X) t) 
- 

(p Q)N-I I (OP/Q) 
LJ=O 

(5.1) P 2Q)NIJJ [(OP/Q)2 - OP/Q2cos I + 

N-I 

(PQ) 
N lf [(IP)2 - PQ2cos +Q2] 

The factors of the denominator are polynomials of degree 2p in A and can be 
factorized in quadratic factors (since x2 - 2 cos(TTj/N)x + 1 has no real linear 
factors, we cannot get any real linear factors in the denominator). Similarly, the 
numerator in (5.1) can be factorized in linear and quadratic real factors. 

Therefore, vN(t) can be computed by a recursive scheme 

(5.2) ( L2 + yI)zl = S,(L)z,-,, i = 
1,2 ... 

p(N - 1), 
Nt - 

Zp(N-1)' 

where the S, are linear or quadratic polynomials. 
The arguments can easily be modified to cover the case when t = n/N. We get 

G(logfN(X), t) (pQ)N-nfl [(fp)2 - OPQ2cos nL + Q21 

N -1 
* l [(OP) 2- OPQ2 cos 7NJ Q2] 
J= 

Thus, if L is a second order elliptic operator, vN(t) can be computed essentially by 
solving a sequence of p(N - 1) fourth order elliptic equations. 

In view of (5.2) it is reasonable to take Np as a measure of efficiency of a certain 
Pade approximation. In [5] we compare the efficiency of different approximation 
and give evidence that high order approximations are superior to low order ones. 
This is also confirmed by numerical experiments (see Section 6 of this paper). 

Note that in the procedure given in this paper it is not necessary to store 
simultaneously the solution at all time levels as in the scheme of [2] (it is possible, 
however, to save storage also in the latter method by using cyclic reduction for 
solving the large linear system). 

Space discretization and the efficient solution of linear algebraic systems corre- 
sponding to (5.2) are treated in [4] for the special case when the geometry is 
rectangular in two dimensions and the coefficients of L are nonconstant but allow 
separation of variables (see also [3]). 

6. Numerical Examples. In the introduction we pointed out that the main 
importance of the results of this paper would be in connection with problems in two 
(or more) space dimensions where the geometry is nonrectangular, or the coefficients 
of L are nonconstant. However, to illustrate the theory we choose instead the 
simplest example possible, namely the one-dimensional heat equation, because here 
we know analytic solutions. 
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Consider the heat equation 

Jut= , 0 < x < 7T, 0O<t 1, 

lu(O, t) = U(7T, t) = O. 

In the Examples 1-3 the solution is taken to be 

u(x, t) = c e-tsin x + C3e-9tsin 3x2 
(6.1) 0c = O.1, c3= -0.99. 

Thus we have M 1. The data are chosen as 

w(x) = u(x, 1) + A(x), 

(6.2) A(x) = c4e 16sin 4x, C4 = 8.886 2 

L 'I~~~~~~~~~~~~~~~~T 

where the perturbation A(x) has the norm 8 I 
IA(x)II - 10-6. It is interesting to 

compare the sizes of the different terms in w: 

O.le-' - 3.7 10-2, 

0.99 e9 1.2 10-4, 

8.886e-6 10-6. 

In the following we measure the error of an approximate solution u as 

49 

llu(t) - 2(t)H2 = 50E (u(i' 50, t) - u(i/50, t)), 

which is an approximation of the L2[0, r ]-norm of the error. 
Example 1. We here compare the exact solution (6.1) and the approximation by 

the backward beam method 

v(x, t) c CkG(k, t)ek sin kx, 
k= 1,3,4 

where G is defined by (2.13). We also give the approximation by the regularization 
method 

Vr(x, t) - 
E CkF(k , t)e ksin kx, 

k= 1,3,4 

where F is defined by (2.12). 
In Figure 6.1 we have plotted the solution and the approximations for four 

different values of t. The parameter 6/M was chosen equal to 10-6 (note that 
M= Hlu(x, 0)1 = 1 and IIAII = 10-6). Both methods recognize the perturbation 
A(x) as noise. This is due to the fact that (for fixed t) the functions G(A, t) and 
F(A, t) defined by (2.12) and (2.13), respectively, have a maximum at X = log(MI6) 
(see Figure 6.2 below). Here log 106 

- 
13.82. 
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?.Lme: C.5000 L Lme: 0.2500 
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FIGupRE 6. 1 

The backward beam (dotted curve) and the regularization 
(dashed curve) approximations are plotted together with the 
correct solution (solid curve). 8/M = 10-6. 

Note that for t 0.5 the two methods give identical approximations, but for 
smaller values of t the regularization method gives better approximations. The 
reason for this can be seen from Figure 6.2 where we have plotted the functions 
G(X, 0.125) and F(- , 0.125) defined by (2.13) and (2.12). 
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FIGURE 6.2 

The functions G(X, t) (dotted curve), F(X, t) (dashed curve), 
and exp(X(l - t)) (solid curve) are plotted for t = 0.125. 

SIM 
- 10-6. 

For 0 sX A log(M/I) the functions G and F are approximations of exp(X(l - t)). 
It is easily seen that G(X, t) s exp(X(l - t)) and F(X, t) < exp(X(l - t)), but Fis a 
better approximation of the exponential. 

In Table 6.3 we give the errors of the approximations for the four values of t. Note 
that even if the backward beam approximation is not as good as the regularization 
approximation, the error is still within the theoretical bound. 

TABLE 6.3 

Actual error 
t Theoretical error Backward beam Regularization 

0.5 lo-, 3.14 10-4 3.14 10-4 

0.25 3.16 10-2 1.03 10-2 6.39 10-3 

0.125 0.18 0.098 0.026 
0.0625 0.42 0.31 0.066 

Example 2. To illustrate the dependence of the value of K = log(M/3) we have 
computed the backward beam approximation for the problem in Example 1 with 
8 = 10-7 and 10-8. The results are plotted in Figure 6.4. It is seen that now the 
noise term in w(x) (6.2) is interpreted as data. 
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FIGuRE 6.4 (b) 

The backward beam approximation (dotted line) computed at 
t =0.125 with (a) S/M = 10-7, and (b) S/M = 10-8. (Note 
that the scaling of the vertical axes is different in the two 
diagrams.) The solid line is the correct solution. 

The explanation for this is that the G(X, t) (see Figure 6.2) has its maximum at 
X = K = log(M/3); in this case we have K-= log 107 16.12 and K = log 108 

18.42, which are larger than 16 (see (6.2)). 
If we use too small a value of K, the second term of the solution will be 

suppressed. 
Similar results can be obtained for the regularization method. 
Example 3. We consider the same equation and the same data as in Example 1 

and study the effect of time discretization by Pade approximation. We have used 
K = log 106 and give the L2-errors of the time-discrete backward beam and regulari- 
zation approximations at two time levels. Note that at t = 0.5 the two methods are 
identical. 

TABLE 6.5 

L2-error of the backward beam and regularization approxima- 
tions at t = 0.5 for different values of (p, q) and N. The 
theoretical error estimate (3.5) is 1.5 - 10-3. The errors in the 
nondiscrete approximations are both 3.1 _ 10-4. 

N 
(p,q) 2 4 8 10 20 30 40 

(1, 1) 1.1 10-2 2.1 10-2 8.4* 10-3 4.3 10-3 8.1 10-4 3.8 * 10-4 3.0* 10-4 

(2,2) 9.7 10-3 2.1 10-3 4.1 10-4 3.5 10-4 3.2 10-4 3.1 * 10-4 3.1 * 10-4 

(3,3) 3.0 10-2 1.6 10-4 3.1 10-4 3.1 10-4 3.1 10-4 

(4,4) 6.4- 10-4 3.2- 10-4 3.1 10-4 3.1 10-4 

(5,5) 4.9- 10-4 3.1 10-4 

(6,6) 3.8- 10-4 3.1 10-4 

(7,7) 3.1 10-4 

(8,8) 3.1 10-4 

(9, 9) 3.1 10-4 

(10, 10) 3.1 10-4 



BACKWARD SOLUTION OF PARABOLIC EQUATIONS. II 83 

TABLE 6.6 
L2-error of the regularization approximation at t 0.2 for 
different values of (p, q) and N. The theoretical error estimate 
is 0.11. The error in the nondiscrete regularization approxima- 
tion is 1. 10-2. 

N 
(p,q) 5 10 20 30 

(1, 1) - 1.1 10-1 1.7 * 10-2 9.9 10-3 

(2,2) 2.6 10-2 1.2 10-2 1.1 10-2 1.1 10-2 
(3,3) - 1.1 10-2 1.1 10-2 
(4,4) 1.1 10-2 1.1 10-2 
(5,5) _ 
(6,6) 1.1 10-2 

TABLE 6.7 
L2-error of the backward beam approximation at t = 0.2 for 
different values of (p, q) and N. The theoretical error estimate 
(3.5) is 0.1 1. The error in the nondiscrete backward beam 
approximation is 2.5 - 10-2. 

(p,q) 5 10 20 30 

(1, 1) 1.2 6.7 10-2 7.9 10-3 1.8* 10-2 

(2, 2) 4.1 10-2 2.6. 10-2 2.5 10-2 2.5 10-2 
(3, 3) 2.4 10-2 2.5 10-2 2.5 10-2 
(4,4) 2.5 10-2 2.5. 10-2 
(5, 5) 2.5 10-2 
(6, 6) 2.5. 10-2 

From Tables 6.5-6.7 we see that using a sufficiently high order Pade approxima- 
tion we can obtain the same accuracy as in the nondiscrete case. If we compare 
Table 6.5 and Table 4.2 in [5], we also see that for this problem the values of N, and 
N2 given in Table 4.2 are far too pessimistic. The minimal value of Np as given in 
Table 5.2 of [5] is 20 ((p, q) = (10,10)). The best value in practice is Np = 8 
((p, q) = (4, 4)). 

The numerical results given in Tables 6.5-6.7 support the conclusion that it is 
safer and more efficient to use a high order approximation and a small value of N 
than to use a low order approximation and a large N. 
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